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Abstract

In this paper we consider B-wavelets of order 2, i.e. piecewise linear spline prewavelets of
smallest support, over nonuniform knot sequences. We discuss an example showing that
for 1 < p < oo, there is no absolute L,-stability for these B-wavelets. This means that
regardless what specific scaling of the B-wavelets is chosen, the corresponding stability
constants cannot be made independent of the knot sequences involved.

1 Introduction

Polynomial splines are fundamental tools in numerous branches of applied mathematics,
and for spline spaces defined over a given knot sequence, the basis of choice is provided by
B-splines, which possess a lot of attractive properties for numerical computations. One
of these important properties of B-splines is their absolute stability. Given a B-spline
basis {Bi}ij 1 of polynomial order d over a valid knot sequence t, a classical result by de
Boor [1] states that properly normalized B-splines are stable in the sense that for each
set {bi}li of real coefficients it holds that

C, Ibp • -bib- Bi < B IbIl. (1.1)

iE1

Here I11 Ip denotes the standard integral and discrete p-norms for 1 < p < c), respectively,
and the normalizing factor 6i for each B-spline is the length of its support divided by
the order d. The important point is that the positive constant Cd is dependent on the
order d alone, and not in any way on the underlying knot sequence t.

Since nested knot sequences give rise to nested spline spaces, spline functions have also
become a focus of attention within the theory of wavelets and multiresolution analysis,
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starting with cardinal spline wavelets on infinite equally spaced and uniformly refined
knot sequences, for which Fourier transform techniques are available, see [3] and the
references therein.

The study of spline wavelets on bounded intervals, for arbitrary knot sequences and
nonuniform refinement began with the papers [4], [5] and [2], respectively. The construc-
tion of so-called minimally supported B-wavelets for a given spline order d and two nested
knot sequences to provide a basis of the relative orthogonal complement (wavelet) space
is described in detail in [6]. This means that given the coarse and fine knot sequence,
there exist explicit algorithms to determine the supports of the B-wavelet functions, the
so-called minimal intervals, and also to compute the corresponding wavelet functions,
though only up to a normalization constant.

One open problem, however, is how to fix the normalization factor for each B-wavelet
function to achieve best possible stability for the whole B-wavelet basis. We provide an
example for the case of piecewise linear wavelets, i.e. polynomial order 2, that shows
that for 1 < p < oo there is no absolute stability of B-wavelets, meaning that there is no
choice of normalization that provides absolute stability constants which are completely
independent of the underlying knot sequences. Lp-stability estimates involving a quantity
dependent on the knot sequences for 1 < p < oo and showing absolute stability for p = 1
are given in [7].

2 Piecewise linear B-wavelets

The theory of B-wavelets [6] covers general cases of knot refinement, such as situations
where several or no knots at all are inserted into an old knot interval, or where the
multiplicity of an existing knot is increased. For our purposes, however, it is sufficient to
consider what one might call the standard setting, where all knots are simple except at
the interval endpoints, which we can count as double knots, and where exactly one new
knot is inserted strictly between two old ones.

Our notations are as follows for the closed interval [0, 1]. We have a coarse knot
sequence with n - 1 interior knots, namely

7 :O0=--rO < TI < ... < -r" l

Strictly between each pair of coarse knots -i-1 and Tj we insert a new knot si at an
arbitrary location, i.e.

Tr-i <si <ri for each i =1...,n.

Thus we have a sequence s of new knots
s:O<Sl1<"'..<sn < 1.

The fine knot sequence t = - U s, when ordered appropriately, is given as

t; : 0 = t0 < tl < ... < t:2n-- ,

where the even numbered knots in t correspond to old knots in T, while the odd numbered
knots represent the newly inserted knots from s. To account for the boundary, we treat
the interval endpoints as double knots by setting 7-- = t-1= 0 and rn+l = t2n+1 = 1.
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For our investigations it is necessary to introduce also some notation related to the
knot spacings. We set

di = ti+l - ti for i = 0,..., 2n - 1, and 6i = ti+1 - ti-1 for i = 0,..., ,2n,

which means 60 = do = t, -to and J2,, = d2n-1 = t 2n -- t2,_ 1 at the boundary. Thus 6i is
the distance between two consecutive old knots if i is odd, and between two consecutive
new knots if i is even (and not at the boundary).

We also introduce the index sets
0 = {1, 3,..., 2n - 1} and Q0 = {3, 5,..., 2n - 3}.

The piecewise linear functions on the knot sequences 7- C t form nested linear spaces
V0 C V1 of dimensions nI +1 and 2n+ 1, respectively. The corresponding piecewise linear
B-splines forming a basis of these spaces are simple hat functions. We denote them as Wj
and 'i for T and t, respectively, where with the necessary adjustments at the endpoints,

(x - r7- 1) /J2j-1 if x E [rj-1,rj]
j-(X)-- (rj~l--X) /

5
2j+l if x E [Tj,rj+I] for j = 0,...,n, (2.1)

0 otherwise

f(X - ti- 1) /di- 1 if x E [ti-i,ti]
7i (x) = (ti+1 - x) /di if x E [ti,ti+1 ] for i = 0,..., 2n. (2.2)

0 otherwise

Using for any two functions f, g E V1 the standard inner product

(f, g) = f (t) g (t) dt,

we can write
V1 =Vo D W,

where W is the relative orthogonal complement of Vo in V1 , and e denotes orthogonal
summation. The dimension of W is n, so that there is a basis function Ok for every index
k E Q, or in other words for each newly inserted knot sk.

Nonzero functions Ok E W with minimal support are called B-wavelets. The general
theory for B-wavelets developed in [6] establishes in this special case that there are n
different piecewise linear B-wavelets which form a basis of the wavelet space W. Each
such B-wavelet is uniquely determined up to a constant multiple. There are two boundary
B-wavelets ¢b and 02n-1 and n - 2 interior B-wavelets Ik for k E 0o, which we will
consider first. Each interior B-wavelet has support [tk_3, tk+3], So that

k+2

Ok (X) = E qik"Yi (x) for x E [0, 1]
i=k-2

with the coefficients determined by Ok E W, or in other words

(Ok,Pj) -0 for j = 0,...,n.
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For the boundary wavelets 01 and V2n-1 we have to make some minor modifications.
Their supports are [t0,t4 ] and [t2 n- 4 ,t 2 n], respectively, so that

3 2n

0h1 (X) =~qi'>i (x) and 02n-.1 (x) = qifll-. (x) for x E [0,-1]
i-=O i=2n-3

In the paper [7] the values of all B-wavelet coefficients qý are given explicitly in terms
of the knot locations for the standard setting described here. In the same paper estimates
for the coefficients are used to derive Lp-stability estimates for these B-wavelets.

3 Stability of B-wavelets

Our aim in this paper is to establish

Theorem 3.1 Given the B-wavelet basis {fk}klk , then for 1 < p < oo, there are no
sets of weights ak,p, k E Q2, such that

Kg 1 1Clp < ý Ckak,p'k < K2 IJjcii (3.1)
kEQ

holds for any wavelet coefficients (c1 , c3 ,..., c2n-1) and with absolute constants K1 > 0
and K 2 > 0, which are completely independent from the choice of knot sequences '- and s.

Due to the finite dimension of W, it is clear that stability constants K 1 and K2 exist,
as any two norms on W are equivalent. The pertinent question is how the weights could
be chosen to achieve that the constants are actually independent of the dimension, the p-
norm and, if possible, the choice of new knots s. We will prove the assertion by assuming
that the estimate (3.1) holds with constants independent of the knot sequences. Then
the following special case serves as a counterexample to this assertion.

The old knot sequence T consists of the equally spaced points:

ro = 0, -1i = 1/3, -r2 = 2/3, T3 = 1.

We want to investigate what happens if two newly inserted points are positioned ever
more closely, so we introduce the new knots as

s, = 1/3 - ,8s2 = 1/3 +q, 83 = 5/6, for 0 < E, 7 < 1/3,

in order to find out what happens if both E -+ 0+ and 71 -+ 0+.

Thus the fine knot sequence t is

to = 0, t1 = 1/3 - F, t2 = 1/3, t 3 = 1/3 + 77, t4 = 2/3, t 5 = 5/6, t6 = 1.

The fine interval lengths are

do = 1/3 - s, d, = E, d2 = 7, d3 = 1/3 - 7, d4 = 1/6, d 5 = 1/6,

while

1 -3 6-5 1 /3, and Jo - 1/3 - E, J2 E +,q, 64 1/2 - 77, J6 1/6.
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In this setting any wavelet
6

S= qji C W
i=O

must be orthogonal to the coarse hat functions •0,'", ýp3. This actually means that the
column vector q of coefficients qj must satisfy the matrix equation

Aq = 0, (3.2)

where the entries of A are the inner products of the coarse and fine hat functions, i.e.

aj,i= (pj,,y), for j=0,...,3, i=0,...,6.

Direct computations using (2.1) and (2.2) yield as the only nonzero entries
_ 12 1 1 1 1 _122 2

a0,o = -2 --E + 9 ao°l= 6+ -8 a 0 ,2 2 ,

12 1 1 1 1
ai,o = - E+ ,-, a1, 1 =

a, 12 1 12 1

a1 3  1 1 1 21 1
aa4  ?7 3 +1

a2  1 2 1 1

a4 1 2 1 13

1 1a 2 , 2 =--- V + 112 a26 =72'

1 1 5= 2 , a 3 ,5 = - , a3 ,6 = T2

We now investigate the B-wavelets 01 and '3 in detail, corresponding to s1 tj and
S2 = t 3. Specializing the results from [7] then yields all necessary B-wavelet coefficients
for this setting up to a scaling factor. Note, however, that it is straightforward to check
that the corresponding coefficient vectors satisfy the matrix equation (3.2).

The coefficients of the boundary wavelet V) are

13&
1 - 3e'

q1 = 6-
e + 7r + 6e7r'

= - 1+3r)1 + 374 6t1

E + 7/+ 6e7'

1 9i712I I I
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while the ones for the interior B-wavelet b3 are

3 9E 92
q1 - + i? +6r'

1+38
E + 8 7 + 687'

(3 3(+ q) 9(1 - 277)
2(E +, + 6Eq) 2(5 - 12,q)'

3- 9
5 - 127r'

3
q4 2 (5 - 1277)"

We first provide estimates for the p-norms of these B-wavelets.

Proposition 3.2 For small enough E and q7, it holds for 1 <p p: cc that

11 II 11 p 1- (E + q)1/P- 1

4 2

Proof: For all 0 < e, 7 < 1/3 we find that

jq2j (F+77)- inf (1+37)(8+7)
-0<e,7r<1/3 E + 71+ 6E87

8 (1 + 77)--

9

and, similarly,
213 !8 (_ +,q)-1

Note that instead of 8/9 we may write 1 - o, for any a > 0 if E and q7 are small enough
or even 1 if 8 = 77.

In the process , 77 -- 0+ all other coefficients q1 and q3 have finite limits. This means
that for small enough 8 + 77

110,1. maxjqjj = q2 8 (E + 77)_
II11311 = max q 3 = lql 31

i 2 9 (-c + 77)_1II¢P311oo maxlq3] = [q3[ _> 9(+7

The absolute stability of piecewise linear B-splines (1.1) yields with 02 > 5/2 (see [1])
and 62 = 8 + 77

i=o5,• 2( lp (I/pIxp l/p, li•lp'pIlbillp = Zq• Ž g(k) 1  0v , ~u Uu '/u

P
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2 1/p 1/ (1) 1/p />- -5 IqllI<61P >--5(+)l-
5 2P

Analogously we get

1131 q pY 2 (1 )1/p q3 61 16 (1)1/p(Ft_'q)l1p-1

5 2 45 2

to complete the proof. El

Proof of Theorem 3.1: Let us now assume that with some scaling factor B-wavelets
are absolutely stable in p-norm for 1 < p < oo, i.e. there exist weights O1kp so that
the inequalities (3.1) hold with constants independent of the specific choice of knot
sequences. Choosing in the current setting all coefficients equal to zero except for cl = 1,
the stability inequality (3.1) yields

IIaj,pVliIP < K 2

or in other words, using Proposition 3.2
K2  4 ~

al'pi !ý K2 < 452'-/2 K2 (,F + 77)1-"p (3.3)

and by a similar argument

K 2  45 -1/p
Ia3,p- • <P311P 16 (3.4)

On the other hand, the stability estimate (3.1) yields for arbitrary cl and c3 , while
setting all other ck, to zero, that

IIlcal,p'i + c3C 3,p03jII > K1 (IcI Ip + Ic3 11)1/P > Kimax (Ic, I, IC3l)

Let us choose specifically
C1 = 03,p and C3 = -- l,p,

which results in
lal,pa3mp 101 - V)311 -> Klmax (la•c,,l la 3,pl)

leading with (3.3) and (3.4) to

+ 1/P (II I3)11/Ž 16K (3.5)(15 + 'q) 1 )1 - 0311 --- 45K2" 35

On the other hand we derive from the absolute stability of linear B-splines (1.1) that

I1I1 - 0311p
= Iqo3'yo + (ql - q') "yP + (q2 - q3) -Y2 + (q' - q33) - q3 _4 - q 3l5 P

--< \ u , i • i , • s 3 ) 6,q5 / , q - q • 1 1 p , ( q 1 - - 3 )] 6 11 / p , ( q l -- q 3 ) 6 / pt 3 , 'q 4 3 6 1 1Pu 4 , q tr a • lP" 3 6 1 P
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<_~ ~ ~ ~~~36 6mx(I6/,l•q]lPV , I'!• q2 1 611P, 31-q 611P,

All the terms

1 5 ' Iqj - q, 1 61/P, I - q 1 , q4j 6•/, qq Iq l /P

are in fact bounded from above for E + -7 -+ 0+, so that the expression

(6 + 7)1-l/P q1 6l1P

and the other such terms tend to zero.
Since Jq - q 31 = 3 IJE / (E + 77 + 6m?) we obtain for the only remaining term

(E + J)q1/ -d _231 6,/1 3 IE - 771i < 3 Is - 711,
-2 1 2 1 + 6 q7/(,F + 77) -

which goes to zero as well for E + 17 -+ 0+. As a consequence

limr (E + 77)•1-/P 1/p -0 0311p = 0,

which contradicts (3.5). C

Remark 3.3 Although we have chosen an example with one boundary and one interior
B-wavelet, let us remark that the lack of absolute stability is in no way due to a boundary
effect. A completely analogous reasoning is possible if one chooses knot sequences with
more interior knots and studies the behaviour for two interior B-wavelets once two new
knots coalesce. Similarly just two boundary B-wavelets could be used on an even shorter
knot sequence, where there are no interior B-wavelets at all.
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